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1. In troduct ion  

Regular maps may be thought of as a combinatorial generalization of the Platonic 
solids. The standard authority is the book by Coxeter and Moser [4], in which 
copious examples are provided of regular maps that lie on orientable surfaces. In 
fact, it is easy to construct a regular map on an orientable surface of any genus 
g > 0 .  

The situation where the map resides on a non-orientable surface is also con- 
sidered briefly in [4]. It is easily shown how to obtain a regular map on the 
projective plane: just by identifying antipodal points of some of the Platonic solids 
for instance. Less obvious, however, is the non-existence of regular maps on the 
Klein bottle (genus 2) or on the non-orientable surface of genus 3. 

Despite this apparent evidence to the contrary, regular maps do exist on most  

non-orientable surfaces. (This statement will be clarified later.) Table 8 of  [4] 
contains many examples, and in [6] Steve Wilson gives an infinite family of non- 
orientable surfaces that admit regular maps whose underlying graph is complete in 
each case. 

In this paper we describe a group-theoretic construction which we then use to 
show that regular maps exist on non-orientable surfaces of over 77 per cent of 
all possible genera. Our construction involves taking the semi-direct product of a 
cyclic group N (of variable order) by a fixed g r o u p / / w h i c h  is known to be the 
automoq~hism group of a non-ofientable regular map M with appropriate parame- 
ters; this is achieved in such a way that the resulting groups are the automorphism 
groups of a family of non-orientable maps which all have the given map M as a 
quotient. 
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First we describe some of the standard background on regular maps in Section 
2, including the connection with group presentations which is fundamental to 
our approach. Details of the construction and a family of starting blocks (that is, 
possibilities for the 'top' g roup / / )  are given in Section 3, and the genera obtained 
so far are summarized and discussed in Section 4. 

2. Basic Concepts and the Groups G p,q,r 

A map is a 2-cell embedding of a connected graph into a closed surface without 
boundary. Such a map M is thus composed of a vertex-set V, an edge-set E,  
and a set of  faces which we will denote by F. The faces of M are of course the 
connected components of the space obtained by removing the embedded graph from 
the surface; alternatively, in the orientable case, they can be considered without 
recourse to geometry by considering just the underlying graph together with a 
'rotation' at each vertex (see [1]). 

Associated also with any map is a set of darts, or arcs, which are the incident 
vertex-edge pairs (v, e) E V × E.  Each dart is made up of two blades, one corre- 
sponding to each face containing the edge e (except in degenerate situations where 
an edge lies in just one face, but these will not concern us here). An automorphism 
of a map M is a permutation of its blades, preserving the properties of incidence, 
and as usual these form a group under composition, called the automorphism group 
of the map, and denoted by Aut(M).  

Now if the group Aut(M) contains elements R and S with the property that R 
cyclically permutes the consecutive edges of some face f (in single steps around 
f) ,  and S cyclically permutes the consecutive edge incident to some vertex v of f 
(in single steps around v), then following Wilson [6] we call M a rotary map. In 
this case (by connectedness) the group Aut(M) acts transitively on the vertices, on 
edges, and on faces of M, and it follows that all the faces are bordered by the same 
number of edges, say p, while all the vertices have the same degree, say q. 

Notice also that the automorphism RS interchanges the vertex v with one of its 
neighbours along an edge e (on the border of f) ,  interchanging f with the other 
face containing e in the process. The three automorphisms R, S and RS may thus 
be viewed as rotations which satisfy the relations 

R p - - S  q = ( R S )  2--  1. 

If a rotary map M admits also an automorphism a which (like RS) 'flips' the 
edge e but (unlike RS) preserves the face f ,  then we say the map M is regular. 
This automorphism a is essentially a reflection, about an axis passing through the 
midpoints of the edge e and the face f .  Similarly, the automorphisms b = aR 
and e = bS may also be thought of as reflections, and the following relations are 
satisfied: 

a 2 = b  2 = c  2=(ab) p=(bc) q=(ca) 2=1.  



REGULAR MAPS ON NON-ORIENTABLE SURFACES 211 

Note: In [4] rotaty maps are called regular, while regular maps are called reflexible; 
this notation appears to have been abandoned. 

By connectedness, every automorphism is uniquely determined by its effect 
on any blade, and in particular, the stabilizer of every blade is trivial. In the 
case of a rotary map M, the group Aut(M) is transitive on darts, but if M is 
regular, then Aut(M) is transitive (indeed regular) on blades. As a consequence, 
the automorphism group of a regular map M is generated by the reflections a, b, e, 
described above. 

Counting the number of blades containing a given edge e yields IAut(M)l = 
21E I when M is rotary but not regular, while IAut(M)l = 41E I when M is regular. 
In either case, counting the number of darts incident with a given vertex, edge or 
face gives the well-known identity qlVI = 21E [ = plFI. 

One other geometric notion we consider is that of a Petrie polygon: this is a 'zig 
zag' circuit in which every two but no three consecutive edges border the same 
face. It is not difficult to see that every edge of a map M lies in exactly two Petrie 
polygons, and so we can talk of the Petrie dual P (M)  of M as that map which has 
the same vertices and edges as M but whose faces are the Petrie polygons of M. 

Note that P ( M )  is dual to M in the sense that it establishes a duality between 
faces and Petrie polygons: the Petrie polygons of P(M)  are the faces of M, and 
vice-versa. Also, as with the standard dual D(M)  (obtained by interchanging the 
roles of the vertices and faces), the Petrie dual P(M)  is regular if and only if M 
is regular; see Wilson [5]. On the other hand, unlike the standard dual, the Petrie 
dual may lie on a different surface from that of the given map M, and in particular, 
P ( M )  can often be orientable when M is not. 

When M is regular, the automorphism abe acts like a glide reflection, moving 
some Petrie polygon along itself in consecutive steps. If the Petrie polygon contains 
r edges, then a, b and c satisfy the relations 

a 2 = 5 2 = c 2 ---- (ab) p -- (bc) q -- (ca) 2 -- (abc) r = I (1) 

and we say that M has parameters {p, q),. Note that D(M)  then has parameters 
{q,p}~, while P ( M )  has parameters {r, q}p, and in fact all six permutations of 
{p, q, r} are possible; see [5]. 

The relations (1) are defining relations for the abstract group G p,q,r defined by 
Coxeter (see [3]). By what we have outlined above, the automorphism group of 
any regular map M of type {p, q}, is a non-degenerate homomorphic image of 
this group G p,q,~, 'non-degenerate' meaning that the orders of a, b and e and their 
products ab, bc and ca are preserved. 

Conversely, any non-degenerate homomorphism from G p,q,~ to a finite group 
G yields a regular map M with parameters {p, q}~ on which G acts as its auto- 
morphism group. In fact the vertices, edges and faces of M may be taken as the 
cosets in G of the (images of the) subgroups V = (b, c), E = (a, c) and F = (a, b) 
respectively, with G acting by right multiplication. (These three subgroups then 
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become the stabilizers of some mutually incident vertex v, edge e and face f 
respectively.) 

Finally, note that the regular map M is orientable if and only if the subgroup 
(ab, bc) of G = Aut(M) has index 2 in G (as does its pre-image in the group 
GP,q,r). In this case (ab, bc) = (R, S) has two orbits on blades, with the two blades 
associated with any given dart lying in different orbits. The elements of this even- 
length word subgroup are 'rotations', while all other elements of G are 'reflections' 
(or glide reflections), reversing the orientation of the surface. 

In the non-orientable case, however, the subgroup (ab, be) has index 1 in G. In 
particular, this subgroup has just one orbit on blades - as shown in [4] using a simple 
colouring argument-  and there are no true reflections: every reflection is a product 
of rotations. The genus of M is defined as the genus g of the non-orientable surface 
on which M is embedded, and is given the usual formula in terms of the Euler 
characteristic: 2 - g = X = I Y l -  IEI + IFI. As 2plFI = 41EI = 2qlYl -- IGI, 
the latter formula simplifies to g = I G I ( 1 / 4  - 1/2p - 1/2q) + 2. 

3. The Construction 

Using the correspondence between regular maps and generators for their auto- 
morphism groups (as described in the previous section), we can set about finding 
regular maps on non-orientable surfaces by constructing groups with the appropri- 
ate properties. 

Suppose H is a finite group generated by elements u, v and t which satisfy the 
relations u 2 = v q = ( u v )  p = t 2 - -  ( u t )  2 = ( v t )  2 = 1, with v and u v  having (true) 
orders p and q respectively, and such that u v  and v 2 generate a subgroup of index 
2 in H,  containing t. In this case necessarily q is even, and H itself is generated by 
u and v. Also let N be a cyclic group of order n, generated by some element w. 

Now form the semi-direct product (or split extension) N H  of N by H,  with 
H acting on N by conjugation in such a way that u and v both invert w, this is: 
u - l w u  = W - 1  = v - l w v .  In this group define a = w u t ,  b = t v  and c = t, and 

consider the subgroup G generated by a, b and c. 
Note that w is centralized by both u v  and v 2, and therefore also by t. In particular, 

this implies a 2 = ( w u t )  2 = w w - l ( u t )  2 = 1, so that a has order 2. Similarly b, c 
and ca all have order 2, while bc = v -1 has order q. Next ab = w u t 2 v  = w u v  and 

therefore (ab)  p = w p, hence the order of ab is equal to lcm(n, p). 
It follows that G is the automorphism group of some regular map M whose 

vertices all have degree q and whose faces are all bounded by lcm(n, p) edges. 
The numbers of vertices, edges and faces of M depend on the order of G, and its 
orientability (or otherwise) depends on whether or not the subgroup generated by 
ab, bc and ca has index 2 (or 1). 

To see what can happen, we consider a few examples: 
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EXAMPLE 3.1. Let H be the symmetric group $4, and in this group let u = 
( 1, 2), v = ( 1, 2, 3, 4) and t = ( 1,2)(3, 4). Note that u and v themselves generate 
$4, and that t = ( u v ) - l v 2 u v ;  in fact that subgroup generated by uv = (1, 3, 4) 
and v 2 = (1, 3)(2, 4) is the alternating group A4, which obviously contains t, so 
the above conditions are satisfied. 

Now if w has order n, then ab has order n if n is divisible by 3, and 3n otherwise. 
Also since u 2 = v 4 = (uv) 3 = 1 are defining relations for the group H = $4, it 
follows that G = (a, b, c) has order 24 times the order of w 3, that is: IGI = 8n if 
n is divisible by 3, while IGI = 24n if n is not. 

Further, as (ab) - l (cb)2ab  = (wuv) - l v2wuv  = ( u v ) - l v 2 u v  - -  t = c w e  find c 

lies in the rotation subgroup (ab, bc), which therefore has index 1 in G. It follows 
that the corresponding map is non-orientable. By the formula given in Section 2, 
the genus of this regular map is 8n(1/4 - 1/2n - 1/8) + 2 = n - 2 i fn  is divisible 
by 3, and 24n(1/4 - 1 /6n  - 1/8) + 2 = 3n - 2 otherwise. 

In either case, we obtain a family of non-orientable regular maps of genera 
3k - 2, for k = 1, 2, 3 , . . . ,  as given also in [6]. This accounts for one-third of all 
positive integers. 

EXAMPLE 3.2. Let H be the subgroup of $6 generated by the three permutations 
u = (1,4)(2, 3)(5,6), v = (1,2,3,  4,5, 6) and t = (2, 6)(3, 5). Note that (u, v) is 
dihedral of  order 12, and that t = uv 3. The subgroup generated by uv = ( 1, 5)(2, 4) 
and v 2 = (1, 3, 5)(2, 4, 6) is dihedral of order 6, and contains t, so the required 
conditions are fulfilled. 

In this case if w has order n, then ab has order 2n if n is odd, but n if n is even. 
Also since u 2 = v 6 - ( u v )  2 - -  1 are defining relations for the dihedral group H,  
it follows that G = (a, b, c) has order 12 times the order of w 2, that is: IGI = 12n 
if n is odd, while I GI = 6n if n is even. 

Further, since uv t  = v 2 has order 3, we find that order of abe = w u v t  is equal 
to lcm(n, 3). In particular, i f n  is odd then (abe) 3~ = 1 is a relation of odd length in 
the generators a, b, e of  G, and hence the rotation subgroup (ab, be) has index 1 in 
G, and the corresponding map is non-orientable. By the given formula, the genus 
of this regular map is 12n(1/4 - 1 /4n  - 1/12) + 2 = 2n - 1. (On the other hand, 
if n is even, the defining relations for H show the rotation subgroup has index 2 in 
G, so the corresponding map is orientable in that case.) 

Letting n = 2k - 1, we thus obtain a family of non-orientable regular maps of 
genera 4k - 3, for k = 1, 2, 3, . . . .  This accounts for 25 per cent of all positive 
integers, and when taken together with the family obtained in Example 3.1, accounts 
for exactly half: all 9 -= 1,4, 5, 7, 9 or 10 mod 12. 

EXAMPLE 3.3. Let H be the subgroup of $7 generated by the three permutations 
u = (1,2)(4,5)(6,  7), v = (2,3, 4)(6, 7) and t = (1,5)(2, 4). In this case H is 
isomorphic to A5 × C2, with uv  = (1, 3, 4, 5, 2) and v 2 = (2, 4, 3) generating the 
subgroup As, and v 3 = (6, 7) generating the centre of order 2. The element t is 
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not only contained in the former subgroup, but is also expressible as a product of 
conjugates of v 2. 

When we form the semi-direct product N H ,  the element ab has order n if n is 
divisible by 5, and 5n otherwise. On the other hand, as (abcbcb)2= (wuv3)2= w 2 we 
find G = (a, b, c) = N H ,  and therefore the group G has order 120n for every n. 

The corresponding map is non-orientable for all n (as in Example 3.1), since the 
element c is expressible as a product of conjugates of (cb) 2. The genus is 20n - 58 
if n is divisible by 5, and 20n - 10 otherwise, and thus we have a family of non- 
orientable regular maps of genus 9 for all 9 = 10, 30, 42, 50 or 70 mod 100. 

Similar arguments are required for other examples. In most cases it is easy to 
determine exactly when the rotation subgroup (ab, be) has index 1 (by considering 
either conjugates of v or v 2, or the order of the product abe, for example). The 
difficulty lies in the calculation of the order of G, which largely depends on 
relations satisfied by the generators of the original group H. For permutation 
groups, however, this may be achieved by inspection or with the help of the 
'relations' command in the CAYLEY system [2]. 

In Table 1 we list a number of examples which may be used as the 'top' group 
H in our-semi-direct product construction. Each item in the table yields an infinite 
family of non-orientable regular maps, all of which have the map corresponding to 
H (obtainable in the case n = 1) as a quotient. We provide generating permutations 
for H,  state whether the construction works for all n or just for n odd, and describe 
the parameters of the regular map(s) which result, along with their genera. 

Many of these examples were found by searching for suitable permutation 
representations of the groups [p,q] = ( a, b, cla2 = b 2 = c 2 = ( ab )P = ( bc )q = 
(ca) z = 1) for small p and q, using the 'low index subgroups' algorithm (available 
in the CAYLEY system [2]). Of course many other examples may be found, 
however their contribution to the genus spectrum will become less significant as 
their orders (and the parameters p and q) increase. 

4. Results and Discussion 

The families of non-orientable regular maps presented in Section 3 account for 
over 77 per cent of all genera. To partly see how this comes about, note that the first 
two examples listed in Table I cover 6 of the 12 residue classes modulo 12, the first 
three cover 26 of the 48 residue classes modulo 48, and so on. In fact our families 
account for 29 547 540 of all residue classes modulo 38 102400 (=27355272), a 
little over 77.5 per cent of  all positive integers. 

There are, of  course, many sporadic examples with odd parameters, for example: 
G 3'7'9 =:- PSL(2, 8), of order 504, yields a regular map of non-orientable genus 8, 
while G 3'7'13 ~ PSL(2, 13), of order 1092, gives one of non-orientable genus 15 
whose Petrie dual is also non-orientable and of genus 51 (see Table 8 in [4]), and 
finally G 5,5,5 '~ PSL(2, 11) of order 660 yields a regular map of non-orientable 
genus 35. 



TABLE I. 

Generating permutations for H Order o f / /  Genera g 

u = ( l ,  2) 24 g =-- 1 mod3 
v = (1, 2, 3,4) 
t = (1, 2)(3, 4) 

all n 
type {3k, 4} 

u = (1,4)(2, 3)(5, 6) 12 
v =(1,  2, 3 ,4 ,5 ,  6) 
t = (2, 6)(3, 5) 
n odd 
type {2n, 6} 

u = (1,  2 ) (5 ,  6)  48 
v = (2, 3, 4)(5, 6) 
t = (3, 4) 
n odd 
type {4n, 6} 

u = (1, 2)(3, 5)(6, 7)(8, 10) 160 
v = (2, 3, 7, 8)(4, 5, 9, 10) 
t = (3, 8) (5 ,  10) 
all n 
type {5k, 4} 

u = (1, 2)(4, 8)(5, 7) 108 
v = (1, 2, 3,4,  5, 6)(7, 8, 9) 
t = (1, 2)(3, 6)(4, 5) (7, 8) 
n odd 
type {6k, 6} 

u = (3, 5)(4, 7)(6, 10)(8, 11)(9, 13)(12, 14) 96 
v = (1, 2, 4, 8, 10, 14, 16, 15, 13, 11, 6, 3)(5, 7, 12, 9) 
t = (1, 2)(3, 4)(5, 7)(6, 8)(9, 12)(10, 11)(13, 14)(15, 16) 
n odd 
type {8n, 12} 

u = (1, 2)(5, 9)(6, 7)(8, 10)(11, 12) 144 
v = (1, 2, 4, 6, 10, 12,9 ,7 ,  11 ,8 ,5 ,3 )  
t = (1, 2)(3, 4)(5, 6) (7, 9)(8, 10)(11, 12) 
n odd 
type {6k, 12} 

u = (2, 5)(4, 9)(6, 14)(7, 12)(8, 15)(10,19)(11, 21) 320 
(13, 24)(16, 25)(17, 28)(20, 23)(22, 30)(26, 29)(31, 32) 

v = (1, 2, 6, 15, 27, 20, 10, 4)(3, 8, 17, 21, 18, 9, 16, 7) 
(5, 11, 22, 30, 23, 12, 24, 13)(14, 25, 31, 29, 19, 28, 32, 26) 

t = (1, 3)(2, 7)(4, 8)(5, 12)(6, 16)(9, 15)(10, 17)(11, 23)(13, 24) 
(14, 25)(18, 27)(19, 28)(20, 21)(22, 30)(26, 31)(29, 32) 

all n 
type {5k, 8} 

g -- 1 mod4 

g = 4mod 16 

g = 6 mod 20 

g = 11 mod36 

g _~ 16mod40 

g =- 20 mod 60 

g = 30 mod 60 
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Generating permutations f o r / /  Order o f / /  Genera g 

u = (2, 5)(3, 4)(8, 11)(9, 10) 192 g - 22mod 64 

v = (1, 2, 3)(4, 5, 7, 9, 8, 6)(10, 12, 11) 

t = (2, 3)(4, 5)(6, 7)(8, 9)(10, 11) 
n odd 
type {8n, 6} 

u = (2, 3)(4, 5)(6, 7) 120 g - 6, 14, 30rood72 

v = (1, 2, 3, 4, 5)(6, 7) 

t = (2, 5)(3, 4) 
all n 
type {3k, 10} 

u = (3, 4)(5, 6) 384 g -- 42mod72 

v = (1, 2 ,4 ,6 ,  8, 7,5, 3) 

t = (1, 2)(3, 4)(5, 6)(7, 8) 

all n 
type {6k, 8} 

u = (1, 3)(2, 7)(4, 5)(6, 9)(8, 10) 240 g - 12mod80 

v = (1, 2)(3, 5)(4, 6, 8)(7, 10, 9) 
t = (1, 3)(2, 5)(4, 7)(6, 9)(8, 10) 

n odd 
type {4n, 6} 

u = (4, 5)(6, 7) 240 g - 20, 38 mod96 

v = (1, 2, 4,6,  8, 10 ,9 ,7 ,5 ,3 )  

t = (2, 3)(4, 5)(6, 7)(8, 9) 

all n 
type {4k, 10} 

u = (1, 2)(4, 5)(6, 7) 120 g - 10, 30, 42, 50, 70 mod 100 

v = (2, 3, 4)(6, 7) 
t = (1, 5)(2, 4) 
all n 
type {5k, 6} 

u = (1, 2)(3, 6)(4, 7)(5, 8)(9, 11)(10, 12)(13, 14) 896 g - 50mod 112 
v = (1, 3)(2, 4, 6, 5)(7, 9)(8, 10)(11, 13, 12, 14) 

= (4, 5)(7, 8)(9, 10)(11, 12) 
all n 

type {7k, 4} 

u = (2, 4)(3, 5)(6, 7) 120 g _---- 14, 38, 62, 86rood 120 

v = (1, 2, 3, 4, 5)(6, 7) 
t = (2, 5)(3, 4) 
all n 
type {5k, 10} 
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Generating permutations for H Order of H Genera g 

= (1, 2)(3, 4)(7, 8)(9, 10) 320 9 ---- 26rood 128 
v = ( 1 , 2 , 4 , 6 , 8 ,  10 ,9 ,7 ,5 ,3 )  
t = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10) 
n odd 
type {4n, 10} 

u = (1, 2)(3, 7)(4, 8)(5, 9)(6, 10)(11, 13)(12, 14) 432 
(15, 16)(17, 18) 

v = (1, 3, 6, 2, 5, 4)(7, 11, 15, 18, 14, 10) 
(8, 9, 13, 17, 16, 12) 

t = (3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16) 
(17, 18) 

n odd 
type {12k, 6} 

u = (1, 2)(3, 5)(6, 7) 240 
v = (2, 3, 4, 5)(6, 7) 
t = (3, 5) 
n odd 
type {6k, 4} 

n = (3, 4)(5, 7)(6, 8) 336 
v = (1, 2, 4, 6,8,  7,5,  3) 
t = (1, 2)(3, 4)(5, 6)(7, 8) 
all n 

type (3k, 8} 

u = (3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(12, 16) 576 
v = (1 ,2 ,4 ,  8, 14, 15, 13, 10, 16, 11,6 ,3)  

(5, 7, 12, 9) 
t = (1, 2)(3, 4)(5, 7)(6, 8)(9, 12)(10, 13) 

(11, 14)(15, 16) 
n odd 
type {12k, 12} 

u = (3, 5)(4, 6)(7, 10)(8, 12)(9, 11) 648 
v = (1, 2, 4, 3)(5, 7, 11,8)(6,9, 12, 10) 
t = (I, 2)(3, 4)(5, 6)(7, 10)(8, 9Xl l ,  12) 
all n 
type {9k, 4} 

= (3, 5)(4, 7)(6, 8) 336 
v = (I, 2, 4, 8,7,  5,6,  3) 
t = (1, 2)(3, 4)(5, 7)(6, 8) 
all n 
type {4k, 8} 

u = (2, 5)(4, 8)(6, 10)(7, 11)(9, 13)(12, 15) 672 
v = (1, 2, 6, 4)(3, 7, 9, 5)(8, 10, 14, 12) 

(11, 15, 16, 13) 
t = (1, 3)(2, 5)(4, 7)(6, 9)(8, 11)(10, 13) 

(12, 15)(14, 16) 
all n 
type {6k, 4} 

g --  56rood 144 

g ~ 12 ,32 ,132modlS0  

g - 9, 23, 72 rood 189 

g - 98 mod 240 

g - - 4 7 , 1 2 8 , 1 3 7 m o d 2 4 3  

g = 23, 44, 86, 149rood252 

g =_ 30, 86, 114 mod 252 
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Generating permutations for H Order o f / /  Genera g 

u = (1, 3)(4, 11)(6, 13)(7, 8)(9, 10)(14, 16) 672 g -- 44, 86, 170, 212mod336 
v = (1, 2, 6, 4)(3, 7, 9, 5)(8, 10, 14, 12) 

(11, 15, 16, 13) 
= (1, 3)(2, 5)(4, 7)(6, 9)(8, 11)(10, 13) 

(12, 15)(14, 16) 
all n 
type {8k, 4} 

u = (3, 5)(4, 7)(6, 8) 336 
v =(1, 2,4,8,6, 3) 
t = (1, 2)(3, 4)(5, 7)(6, 8) 
all n 
type {7k, 6} 

u = (1, 2)(5, 8)(6, 7) 336 
v = (1, 2,4,6, 8, 7,5, 3) 
t = (1, 2)(3, 4)(5, 6)(7, 8) 
all n 
type {7k, 8} 

u = (1, 2)(3, 4)(5, 8)(6, 10)(7, 9) 720 
v=(1, 10,9,3,7,2,5,6,8,4) 
t = (3, 6)(4, 10)(5, 7)(8, 9) 
all n 
type {5k, 10} 

g ~ 34,90,146,202,226,258, 
314 mod392 

g --- 41,104, 167,230, 275,293, 
356 mod441 

g - 74, 218,362,506 mod 720 

Every  posit ive integer g ___ 100 other than 2, 3, 18, 24, 27, 39, 48, 54, 59, 60, 63, 
71, 75, 87, 95 and 99 is known to be the genus of  some non-orientable regular map. 
Of  the exceptions,  non-orientable surfaces of  genus 2 or 3 are definitely known 
not to admit  regular maps (see [4]), and we believe 18, 24 and 27 have also been 
eliminated by Steve Wilson (private communication).  

What  of  the remaining genera? As our method requires (at least) one of  the 
parameters to be even, its scope is limited. As well as this, examples larger than 
those we have provided will produce relatively fewer new possibilities, and so it 
would seem unlikely that our  method will yield much more than it already has - 
but who knows? The true picture is still far f rom clear. 
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